

This discussion paper is/has been under review for the journal The Cryosphere (TC).
Please refer to the corresponding final paper in TC if available.

Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography

M. Shahgedanova¹, G. Nosenko², S. Kutuzov^{1,2}, O. Rototaeva², and T. Khromova²

¹Department of Geography and Environmental Science and Walker Institute for Climate System Research, University of Reading, Whiteknights, Reading RG6 6AB, UK

²Laboratory of Glaciology, Institute of Geography, Russian Academy of Sciences, 29 Staromonetny Pereulok, Moscow, 119017, Russia

Received: 10 July 2014 – Accepted: 21 July 2014 – Published: 25 July 2014

Correspondence to: M. Shahgedanova (m.shahgedanova@reading.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

TCD

8, 4159–4194, 2014

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Abstract

Changes in map area of 498 glaciers located in the Main Caucasus Ridge (MCR) and on Mt. Elbrus in the Greater Caucasus Mountains (Russia and Georgia) were assessed using multispectral ASTER and panchromatic Landsat imagery with 15 m spatial resolution from 1999–2001 and 2010–2012. Changes in recession rates of glacier snouts between 1987–2001 and 2001–2010 were investigated using aerial photography and ASTER imagery for a sub-sample of glaciers. In total, glacier area declined by $4.7 \pm 1.6\%$ or 19.24 km^2 . Glaciers located in the central and western MCR lost 13.4 km^2 ($4.6 \pm 1.8\%$) in total or 8.56 km^2 ($5.0 \pm 1.8\%$) and 4.87 km^2 ($4.1 \pm 1.9\%$) respectively. Glaciers on Mt. Elbrus, although located at higher elevations, lost 5.8 km^2 ($4.9 \pm 0.7\%$) of their total area. The recession rates of valley glacier termini increased between 1987–2000/01 and 2010 from $3.8 \pm 0.8 \text{ m a}^{-1}$, $3.2 \pm 0.9 \text{ m a}^{-1}$ and $8.3 \pm 0.8 \text{ m a}^{-1}$ to $11.9 \pm 1.1 \text{ m a}^{-1}$, $8.7 \pm 1.1 \text{ m a}^{-1}$ and $14.1 \pm 1.1 \text{ m a}^{-1}$ in the central and western MCR and on Mt. Elbrus respectively. The highest rate of increase in glacier termini retreat was registered on the southern slope of the central MCR where it has tripled. A positive trend in summer temperatures forced glacier recession and strong positive temperature anomalies of 1998, 2006, and 2010 contributed to the enhanced loss of ice. An increase in accumulation season precipitation observed in the northern MCR since the mid-1980s has not compensated for the effects of summer warming while the negative precipitation anomalies, observed on the southern slope of the central MCR in the 1990s, resulted in stronger glacier wastage.

1 Introduction

Shrinkage of the mountain glaciers in response to the observed climatic warming has been documented worldwide. The 1990s and 2000s were the warmest decade on the 150-year instrumental record with global surface temperature anomalies of 0.24 and 0.44°C above the 1961–1990 mean

TCD

8, 4159–4194, 2014

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

respectively (www.metoffice.gov.uk/research/monitoring/climate/surface-temperature). Mountain glaciers are sensitive indicators of climatic change at the decadal time scale (Hoelzle et al., 2003) and acceleration in their area and volume reduction in the 1990s has been reported for many regions (Dyrgerov and Meier, 2000; Zemp et al., 2009). The contribution of glaciers and ice caps (excluding Antarctica and Greenland) to global sea level budget increased from $0.67 \pm 0.03 \text{ mm a}^{-1}$ in 1972–2008 to $0.99 \pm 0.04 \text{ mm a}^{-1}$ in 1998–2008 in line with intensifying climatic warming and glacier melt (Church et al., 2012).

Remote sensing is an established way of monitoring changes in glacier area and positions of glacier snouts. To date, most assessments were conducted using multispectral Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery with 30 m horizontal resolution available since 1982 and 1999 respectively and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery with 15 m resolution available since 2000. Together with historical aerial photographs and maps, this imagery enabled assessments at time steps of 20–50 years during which magnitude of glacier change significantly exceeded measurement errors. Various studies that used Landsat imagery reported measurement errors from about 3–5 % of individual glacier's area change for clear ice to over 10 % for debris-covered glaciers or those whose outlines merge with snow fields (e.g. Paul and Andreassen, 2009; Andreassen et al., 2008; Bhambri et al., 2011). For this reason, assessments at shorter intervals in most regions required data from repeated aerial surveys or finer-resolution satellite imagery whose spatial extent and availability are limited (e.g. Hall et al., 2003). Now, when high-resolution multispectral ASTER imagery has been available for more than a decade, its consistent use should significantly reduce uncertainties in measurements of glacier change and enable assessments at decadal intervals over wider regions.

One of the main centres of mountain glaciations in Europe is the Greater Caucasus Mountains located between the Black and Caspian Seas in the densely populated south-western Russia and Georgia (Fig. 1). Few studies of the Caucasus glaciers

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

examined large samples using consistent methods and data. In the Russian-language literature, the most detailed assessments are those by Panov (1993) and Yefremov et al. (2007) based predominantly on the repeated field measurements of positions of glacier termini in the Main (Glavny) Caucasus Ridge (MCR). In the English-language literature, Stokes et al. (2006) examined changes in termini positions of 113 glaciers in the central Greater Caucasus between 1985 and 2000 using satellite imagery. Panov's (1993) analysis of the field measurements and data derived from analysis of historical maps showed that in the period between 1933 and 1965/70 glacier termini in the MCR retreated at an average rate of 12.3 m a^{-1} while in the period between 1965/70 and 1986/89 the recession slowed down to 6.1 m a^{-1} . In the former assessment period, glaciers of the northern and southern slopes retreated at the same rate while in the latter period, the retreat rate of 8.9 m a^{-1} observed on the southern slope exceeded the retreat rate of 4.8 m a^{-1} observed on the northern slope. Stokes et al. (2006) reported the average glacier termini recession rates of 8 m a^{-1} between 1985 and 2000. From this assessment, they inferred a total loss of bare ice area of about 10 % but the study did not assess changes in areas of individual glaciers. Yefremov et al. (2007) reported very close results based on the field measurements. Both Stokes et al. (2006) and Yefremov et al. (2007) reported acceleration of glacier retreat in the 1990s although Yefremov et al. (2007) stressed equally high recession rates in the mid-20th century and slow down in glacier retreat between 1965 and 1985 in line with the earlier work by Panov (1993).

Other studies focused on changes in area and fluctuation of termini of individual or small samples of glaciers. Popovnin and Petrakov (2005) provided a detailed history of shrinkage of Djankuat Glacier in the central sector of the MCR between 1968 and 1999 reporting 9 % ($0.29 \% \text{ a}^{-1}$) reduction in the glacier area. Kutuzov et al. (2012) examined changes in Marukh Glacier located in the western MCR showing that area reduction was similar at 17 % between 1945 and 2011 ($0.25 \% \text{ a}^{-1}$). Bushueva and Solomina (2012) examined recession of Kaskatash Glacier in the central MCR showing acceleration of its snout retreat rate from 1.8 m a^{-1} between 1971 and 1987 to 7.5 m a^{-1} .

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

between 1987 and 2008. More recently, changes in lengths of seven glaciers in the central greater Caucasus over the last 200 years were analysed showing that over the period, these glaciers retreated with an exception of 1910–1920s and 1960–1980s and that the rate of retreat increased since the 1990s (Lerclerq et al., 2014).

Changes in glacierized area on Mt. Elbrus, the largest glacierized massif in the Caucasus (Fig. 1), were examined by Zolotarev and Kharkovets (2007) who reported glacier shrinkage between 1957 and 1997. More recently, Zolotarev and Kharkovets (2012) extended these assessments to 2007 using data from field measurements, aerial photography and high-resolution Cartosat-1 imagery. According to their assessments, the total glacierized area on Mt. Elbrus declined from 132.51 km² in 1957 to 120.03 km² in 2007. Glacierized area declined by 0.22 km² a⁻¹ between 1957 and 1979, by 0.16 km² a⁻¹ between 1979 and 1997, and by 0.45 km² a⁻¹ between 1997 and 2007. Another assessment of glacier change on Mt. Elbrus was published by Holobaca (2013) but this is marked by uncertainties associated with inclusion of rock 15 glaciers, glaciers that are not a part of the Elbrus massif and the use of snow-covered areas in glacier mapping (see Sect. 6 of this paper).

Continuous observations of glacier mass balance are conducted at two reference glaciers, Djankuat and Garabashi (WGMS, 2013). Strong reductions in cumulative mass balance were registered at both since 1995 providing further evidence of glacier 20 wastage (Popovnin, 2000; Popovnin and Petrakov, 2005; Shahgedanova et al., 2005, 2007; Rototaeva et al., 2006; Dolgova et al., 2013).

While published assessments suggest that glaciers in the Greater Caucasus are retreating and rates of retreat have accelerated at the end of the 20th century, reliable large-scale assessments of changes in map areas of glaciers are not available with exception of those by Zolotarev and Kharkovets (2007, 2012) for Mt. Elbrus.

This paper has two objectives: (i) to quantify changes in glacier map area in the central and western sectors of the Greater Caucasus Mountains between 1999/2001 and 2010/2012 using ASTER imagery (or, where not available, 15-m resolution panchromatic Landsat imagery) in line with the requirements of the Global Land Ice

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[|◀](#)[▶|](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Measurements from Space (GLIMS) project (<http://www.glims.org/>) and (ii) to assess changes in glacier retreat rates from the end of the 20th century to the end of the first decade of the 21st century using aerial photographs from 1987 and ASTER imagery for a sub-sample of valley glaciers. In this study, we have chosen not to use earlier 5 Corona imagery (used by Stokes et al., 2006) because measurement errors are potentially comparable with the derived signal over decadal intervals and data from the Catalogue of Glaciers of the USSR and the World Glacier Inventory (WGI) because our preliminary assessments indicated considerable uncertainties in their measurements.

2 Study region

10 According to the Catalogue of Glaciers of the USSR (Panov and Kravtsova, 1967; Borovik and Kravtsova, 1970; Maruashvili et al., 1975) and the World Glacier Inventory (WGI), the Greater Caucasus accommodated over 2000 glaciers with a combined area of approximately 1600 km² in the 1960–1980s (http://nsidc.org/data/glacier_inventory/). Very close results were obtained by Nakano et al. (2013) from Landsat 15 imagery. GLIMS (www.glims.org) and Randolph Glacier Inventory (Arendt et al., 2012) quote over 1300 glaciers with a combined area of 1354 km². The difference is due to the omission of the smaller glaciers in the eastern sector of the Caucasus in this recent assessment.

The Greater Caucasus is subdivided into western, central and eastern sectors which 20 have average elevations of 3200, 4100, and 3700 m respectively. The most elevated central sector extends between Mt. Elbrus (5642 m a.s.l.) located several km north of the MCR and Mt. Kazbek (5033 m a.s.l.). Characteristic feature of the Greater Caucasus is a strong west-east precipitation gradient. The southern slope of the western MCR receives over 2000 mm of precipitation while in the east, the annual total is about ten 25 times lower (Volodicheva, 2002). The equilibrium line altitude (ELA) rises from 2500–2700 m in the west through about 3200–3400 m in the central sector to 3700–3950 m in the east. Due to greater precipitation in the south, ELA is lower on the southern

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

slopes especially in the central MCR and on Mt. Elbrus, where differences between the southern and northern slopes reach 1000 and 200–300 m respectively (Rototaeva et al., 2006).

The largest glaciers are located in the central Greater Caucasus including the glaciated massif of Mt. Elbrus and a number of larger valley glaciers with individual areas of 3–36 km². The cirque glaciers with individual areas of 1 km² or less account for approximately 40 % of the total. In the western and eastern sectors, cirque glaciers with individual areas less than 3 km² prevail (Rototaeva et al., 2006).

3 Data and methods

Changes in glacierized area and recession rates of glacier termini were assessed for the central and western sectors of the MCR and Mt. Elbrus (Table 1; Fig. 1). Areas of 498 glaciers were mapped of which 174 and 304 were located in the central and western sectors of the MCR respectively on both northern (Russia) and southern (Georgia) slopes and twenty on Mt. Elbrus (Table 1).

Glacier outlines were mapped manually despite the advantages of automated mapping demonstrated by Paul et al. (2009, 2013) because of the failure of SWIR channel used in automated classifications (Paul et al., 2002; Bolch et al., 2010) on ASTER in April 2008. Extensive manual corrections are required when automatically mapping small glaciers (i.e. less than 1 km² which constitute about 85 % of all glaciers in the Caucasus) reducing the advantages of automated techniques. The size of the smallest glacier mapped was 0.02 km².

3.1 Satellite imagery and glacier area mapping procedures

Two ASTER scenes from 2001 and 2010 were used for glacier mapping in the central MCR (Table 1). ASTER imagery from 2010 was used for mapping glaciers in the western MCR, however, earlier cloud-free imagery was not available and Landsat ETM+

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

panchromatic image from 2000 which has the same resolution of 15 m as ASTER was used instead. For Mt. Elbrus, ASTER scene was used for 2012 and panchromatic Landsat ETM+ was used for 1999 because these are the only higher-resolution cloud-free images which cover the whole of Mt. Elbrus. The ASTER 2001 scene, used for mapping in the central MCR, covers only the south-eastern sector of Mt. Elbrus. To aid glacier mapping, a vast database of ground-based and aerial oblique photographs was used (e.g. Figs. 2, 3).

The ASTER images were supplied by NASA Land Processes Distributed Active Archive Center (LP DAAC) and Landsat ETM+ panchromatic images were downloaded from the US Geological Survey (USGS; <http://glovis.usgs.gov/>). Both were supplied in the Universal Transverse Mercator (UTM) zones 36–38 WGS 84 projection. The ASTER images were orthorectified prior to the distribution (Lang and Welch, 1999). All satellite images were acquired under the [nearly] cloud-free conditions at the end of the ablation season (Table 1) when glacier tongues were free of seasonal snow. On ASTER images, glacier outlines were mapped using the 0.52–0.6 μm , 0.63–0.69 μm , and 0.78–0.86 μm bands. To aid the interpretation of the panchromatic Landsat ETM+ image sharpening was applied using 5-4-3 band combination. Where glacier margins were obscured by shadows from rocks and glacier cirque walls, a contrast-stretching function was applied to the imagery using ENVI 4.6 software.

20 Most glaciers, except those located on Mt. Elbrus, have clearly defined ice divides. To avoid errors associated with delineation of the upper boundaries of glaciers located on Mt. Elbrus, the total glacierized area of the Elbrus massif was mapped and reported as the main outcome of this study. To assess changes in individual glaciers, ASTER GDEM and the hydrological tools for basin delineation available in ARC 10.1 GIS and applied previously by Paul and Andreassen (2009), Keinholtz et al. (2013) and Svboda and Paul (2009) was used for glacier delineation. It was assumed that upper boundaries of glaciers on Mt. Elbrus did not change between 1999 and 2012.

Surging glaciers were excluded from the analysis except the Kyukyurtlyu glacier located on Mt. Elbrus (Rototaeva et al., 2006). Although this glacier can exhibit changes

that are not forced by climatic variations, there was no evidence of surging within the assessment period.

3.2 Quantification of errors

For each glacier located in the MCR, we calculated three error terms resulting from
5 (i) co-registration of images, (ii) identification of glacier margins, and (iii) presence of
debris cover on glacier snouts.

The ASTER images, used for mapping glaciers in the central sector of the MCR, and
10 ASTER and panchromatic Landsat ETM+ images, used for mapping in the western
sector of the MCR and Mt. Elbrus, were co-registered using a network of 12 interac-
15 tive ground control points (GCP) for each pair of images. Although ASTER imagery
was used for both 2001 and 2010, co-registration of these images and calculation of
the resulting error term were required because different DEMs were used in 2001 and
2010 (Meyer et al., 2011). The maximum root-mean-square error ($RMSE_{x,y}$) value was
8.1 m, which is less than a size of ASTER pixel. The error of co-registration was cal-
15 culated following Granshaw and Fountain (2006). A buffer, with a width of half of the
 $RMSE_{x,y}$ was created along the glacier outlines and the error term was calculated as
an average ratio between the original glacier areas and the areas with a buffer incre-
ment resulting in an average error of $\pm 1.2\%$. The errors of co-registration of ASTER
20 and panchromatic Landsat ETM+ images used for mapping glaciers in the western
MCR and on Mt. Elbrus were calculated using similar method. In the western Cau-
casus, $RMSE_{x,y}$ of 8.3 m and the error of $\pm 1.4\%$ were achieved while on Mt. Elbrus,
where the glaciated area is an order of magnitude larger than the size of individual
glaciers in the MCR, the error was $\pm 0.7\%$.

The uncertainty of glacier margin identification was estimated using multiple digitiza-
25 tion following Paul et al. (2013). A sub-sample of twenty glaciers from the MCR with
areas of $0.5\text{--}9.8\text{ km}^2$ was re-digitised ten times by three different operators. The average
error was calculated as 1.3 % and used for the central and western MCR sub-samples.
The error for the Elbrus glacierezed massif as a whole was very small at 0.2 % due to

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

(i) its large size and (ii) detailed knowledge of the region obtained during many seasons of filed work including DGPS surveys conducted since 2008 on individual glaciers (unpublished field records) and recent helicopter surveys (e.g. Fig. 2).

Debris cover on glacier snouts are a major source of error in glacier mapping (Bham-bri et al., 2011; Bolch et al., 2008; Racoviteanu et al., 2008; Frey et al. 2012; Paul et al., 2013). In the Caucasus, supra-glacial debris cover has lesser extent than in many glacierized regions, especially in Asia (Stokes et al., 2007). Importantly, debris cover is not continuous on the snouts of many glaciers in the MCR and most glaciers of Mt. Elbrus (Fig. 2). The overall majority of debris-covered snouts do not merge with 5 periglacial landforms thus making identification of glacier margins on the satellite imagery easier.

To account for the error term due to debris cover, we followed Frey et al. (2012) and increased the buffer size to two pixels (30 m) for the debris-covered segments of those 15 glaciers where supra-glacial debris were extensive. One of the most heavily debris-covered glaciers in the Caucasus is Donguz-Orun (Fig. 3) where supra-glacial debris cover approximately 70 % of the glacier map area. For this specific glacier, the error of mapping due to debris cover was calculated as $\pm 4.7\%$. We stress that (i) this glacier is not typical of the region and (ii) this is the largest error in the whole data set. For the 20 overall majority of glaciers, where the error term due to debris cover was calculated, it was below $\pm 1\%$.

The total error of glacier area change was calculated as a root mean square of the co-registration, margin identification and, where applicable, debris-cover-related error terms.

25 3.3 Assessment of changes in positions of glacier termini using aerial photographs

Positions of termini of 21 and 17 valley glaciers located in the central and western sectors of the MCR respectively and of 6 glaciers located on the south-eastern slope of Mt. Elbrus were measured on the satellite images and on the aerial photographs

TCD

8, 4159–4194, 2014

Discussion Paper | Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

from 1987 (Table 1). Glacier snout recession is a more sensitive indicator of changes at decadal time scale than area change (Hoelzle et al., 2003; Koblet et al., 2010; Bhambri et al., 2012; Leclercq and Oerlemans, 2012; Leclercq et al., 2014) especially for the large glacierized massifs such as Mt. Elbrus. Valley glaciers were selected for the assessment because they exhibit the clearest climatic signal being less dependent on avalanche nourishment and topography than other types of glaciers (e.g. Shahgedanova et al., 2012). The number of measured valley glaciers (44 out of 97 in the sample) was restricted by the availability of suitable aerial photographs. Glacier length and slope are the main controls of glacier snout reaction (Hoelzle et al., 2003). All glaciers in the sample had similar slopes; the average lengths (measured along the central flow line) of glaciers and length ranges are shown in Table 5 further in the text.

Twenty six and seventeen aerial photographs with a resolution of 1–3 m were obtained on 25–26 September 1987 under the nearly cloud-free conditions for central (including Mt. Elbrus) and western sectors of the Greater Caucasus respectively (Table 1). The photographs digitized at 600 dpi resolution and co-registered to the 2001 ASTER and the 2000 Landsat ETM+ panchromatic images using 10–12 GCP per photograph. After co-registration, the $RMSE_{x,y}$ values not exceeding 6.5 m were achieved for both ASTER and Landsat. ASTER 2001 and 2010 images were used to map retreat of glacier termini on Mt. Elbrus to make the retreat rates comparable with the rest of the data set.

A change in glacier terminus position is traditionally a length measurement along a central flow line (e.g. Stokes et al., 2006). However, changes in position of glacier termini are not uniform along their margin. To account for this, five measurements were taken across the length of each glacier terminus along flow lines and an average value was calculated. The uncertainty in terminus recession was calculated as a combination of the maximum $RMSE_{x,y}$ of image co-registration (8.1 and 6.5 m for 2001–2010 and 1987–2001 periods in the central sector and 8.3 and 6.5 m in the western sector) and a half of pixel value of satellite images (7.5 m) resulting in total errors of ± 11.0 m and

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

± 9.9 m for the two assessment periods for the central sector and ± 11.2 and ± 9.9 m for the western sector.

3.4 Meteorological data

There are two high-altitude meteorological stations with continuing observations in the study area, Terskol in the central MCR (43.26° N; 42.51° E; 2141 m a.s.l.) and Klukhorskii Pereval in the western sector ($43^\circ 15' 8''$ N; $41^\circ 49' 39''$ E; 2037 m a.s.l.) and their monthly air temperature and precipitation records were used to characterise climatic variations in the Baksan and Kuban catchments on the northern slope. Continuous observations from the high-altitude regions of the Inguri and Kodori catchments are not available. Records from Abastumani station, located south of the study region (41.77° N; 42.83° E; 1265 m a.s.l.), terminating in 2005, were used to characterise changes on the southern slope of the central MCR.

4 Results

4.1 The Main Caucasus Ridge

4.1.1 Area change

In total, 478 glaciers located in the central and western MCR lost 13.4 km^2 or $4.6 \pm 1.8\%$ of their map area between 2000/2001 and 2010 (Table 2). Glaciers in the central MCR lost 8.6 km^2 or $5.0 \pm 1.8\%$ of their area (0.6 % a^{-1}); in the western sector, the area declined by 4.9 km^2 or $4.1 \pm 1.9\%$ (0.4 % a^{-1}). Overall, the difference between the slopes and sectors were small and within uncertainty of the measurements. It appears that the greatest loss was observed on the southern slope in the central MCR where glaciers lost $5.6 \pm 2.1\%$ of their combined map area in 9 years and the lowest on the southern slope of the western MCR where glaciers lost $3.8 \pm 1.9\%$ although we note that these differences are just within the uncertainty margin. Of all glaciers in

the sample, twenty lost over 20 % of their 2000/2001 areas and forty one glaciers lost between 10 and 20%.

There are two compound-basin valley glaciers in the sample, both located in the Inguri catchment, which experienced a slower recession than glaciers of other types losing 2.80 ± 1.8 % of their areas. Both glaciers are among the largest in the sample with the 2001 areas of 31.4 km^2 (Lekzyri; the third largest glacier in the Caucasus and the largest in the sample) and 9.4 km^2 (Chalaati). There no statistically significant difference in area loss between other types of glaciers for the MCR as a whole, however, some differences between the northern and southern slopes and the sectors were just outside the uncertainty margin (Table 3). Thus the relative area loss by valley glaciers in the central sector of the MCR was twice as high as in the western sector and valley glaciers located on the southern slope of the central MCR lost the highest proportion of their map area in the whole sample. The valley glaciers in the central MCR are larger than in the west and while their higher absolute loss (4.6 km^2 against 1.9 km^2 in the west) is expected, a higher relative loss is not in line with trends observed in other regions and is likely to result from lower precipitation in the central MCR in comparison with the west (see Fig. 6 further in the text).

In contrast to other glacierized regions (e.g. Paul et al., 2004; Citterio et al., 2007) and in rare agreement with DeBeer and Sharp (2007), the smallest glaciers exhibited the lowest relative change in the central MCR. Thus glaciers with the 2001 map areas of $0.02\text{--}0.1 \text{ km}^2$ lost in total 0.9 ± 2.3 % of their combined area and this loss resulted from a 33 % reduction in area of a single glacier while other 36 did not exhibit measurable change while glaciers within the $0.11\text{--}1.0 \text{ km}^2$ and $1.1\text{--}5.0 \text{ km}^2$ categories lost 5.2 ± 1.3 %. Those larger than 5 km^2 lost 3.7 %. In the western MCR, the difference was less marked and within the uncertainty margin. Glaciers with the 2000 map area of $0.02\text{--}0.1 \text{ km}^2$ lost in total 3.9 % of their combined area which is higher than in the central sector despite higher precipitation. Glaciers with the 2000/2001 map areas of $0.11\text{--}1.0 \text{ km}^2$ and $1.1\text{--}3.0 \text{ km}^2$ lost 4.7 and 3.2 % respectively.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

4.2 Mt. Elbrus

Glaciers located on Mt. Elbrus lost 5.8 km^2 or $4.9 \pm 0.7\%$ ($0.4\% \text{ a}^{-1}$) of their combined area between 1999 and 2012 and their recession rate is comparable with glacier area loss in the MCR despite the higher elevation and larger accumulation to ablation area ratios (AAR) of the Elbrus glaciers (Table 4; Fig. 4). A characteristic feature of glacier recession on Mt. Elbrus is the expansion of nunataks, exposed rocks and separation of sections of glaciers in the ablation zone below approximately 4000 m a.s.l. Nunataks and exposed rocks were not accounted for in the previous measurements (e.g. Zolotarev and Kharkovets 2012) although their combined area was 4.14 km^2 or 3.5 % of the Elbrus glaciated massif in 1999. In 2012, their combined area was 3.74 km^2 . However, the reduction in their absolute area is misleading because in the lower parts of the ablation zone they merged with the surrounding rocks. Calculated relatively to the boundaries of glaciated area as in 1999, the area of 'nunataks' and exposed rocks was approximately 6 km^2 . Figure 5 illustrates the expansion of exposed rocks in the southern slope of Mt. Elbrus including Bolshoi Azay, Malyi Azau and Garabashy glaciers. Two areas of exposed rocks expanded considerably over the last decade, e.g. between Bolshoi Azay and Malyi Azau glaciers (Fig. 5b). In all, eight small ice bodies with a total area of 0.3 km^2 had separated from the main glacier massif by 2012.

Changes in areas of individual glaciers are summarized in Table 4. In absolute terms, the Bolshoi Azau and Djiyukaugenkez glaciers experienced the largest recession losing 1.2 and 1.9 km^2 . In relative terms, two small hanging glaciers (No. 311 and 312) located west of the Bolshoi Azau glacier (Figs. 4 and 5) lost the largest proportion of their map area, 15.2 and 15.4 % each, although in absolute terms the loss is small at 0.1 km^2 . The larger glaciers lost between 1 and 7.4 %. Among the larger glaciers, the highest relative loss characterised Dzhikiugankez ice plateau, Garabashi and Irikchat glaciers. The area loss by Glacier No. 317 (Fig. 4), which terminates over a cliff at approximately 4400 m a.s.l., and Glacier No. 319 were not detectable. The difference in area loss

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[|◀](#)[▶|](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

between glaciers with different aspect is close to the accuracy of measurements for glaciers with southern (5.6 %), eastern (5 %) and northern (4.3 %) aspect. The three glaciers with western aspect lost 2.5 % of their areas.

4.3 Teminus retreat

5 Data on retreat of glacier termini are summarised in Table 5. Across the region, the rates of terminus retreat increased from the 1987–2000/2001 period to the 2000/2001–2010 period by the factor 2.5–3.8. The highest recession rates of rates of $11\text{--}14\text{ m a}^{-1}$ were observed in the central MCR and on Mt. Elbrus, where glaciers are larger, with the strongest acceleration on the southern slope of the MCR. The largest overall retreat
10 was exhibited by the Boslhoi Azau glacier, located on Mt. Elbrus, which is the second largest glacier in the sample. This glacier lost 500 m overall retreating at a steady rate of 22 m a^{-1} . The largest glacier in the sample, Lekzyri, located on the southern slope, lost 40 and 200 m (2.5 % of its 2001 length) in the two periods respectively. Two benchmark glaciers, Djankuat and Garabashi, retreated by 185 and 170 m overall. Retreat
15 of glacier termini in the western sector was more subdued especially on the southern slope where glaciers were receding by 3.2 m a^{-1} in the first decade of the 21st century.

5 Climatic variability

The observed glacier recession is consistent with increasing air temperature of the ablation season (June-July-August; JJA) registered in both central and western MCR
20 (Fig. 6a). In the central MCR, at Terskol station, the average JJA temperatures in 1987–2001 and 2001–2010 were 11.6 and 11.7 °C respectively exceeding the mean JJA temperature of 10.9 °C registered between 1960 and 1986. Similar trends are observed in the western MCR where the average JJA temperatures at Klukhorsky Pereval station in 1987–2001 and 2001–2010 were 12.3 and 12.5 °C respectively exceeding the 1960–
25 1986 mean JJA temperature of 11.8 °C. The JJA temperature record from Abastumani

TCD

8, 4159–4194, 2014

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)
[Abstract](#) [Introduction](#)
[Conclusions](#) [References](#)
[Tables](#) [Figures](#)

[◀](#) [▶](#)
[◀](#) [▶](#)

[Back](#) [Close](#)
[Full Screen / Esc](#)

[Printer-friendly Version](#)
[Interactive Discussion](#)

(not shown) is intermittent and terminates in 2005, however, it correlates closely with the Terskol record ($r = 0.90$) in the overlapping period and indicates strong climatic warming between the 1980s and 2005. It should be noted, however, that despite the warming observed in the last two decades, the 1951–1960 decade still remains the 5 warmest on record in the central MCR with an average JJA temperature of 12.4 °C (Fig. 6a).

An increase in the accumulation season (October–April) precipitation statistically significant at 95 % confidence level was registered at both Terskol and Klukhorsky Pereval in the 1987–2010 period when the averages of 538 and 1173 mm exceeded the 1960–10 1986 averages of 427 and 1037 mm by 26 and 13 % respectively (Fig. 6b). At Terskol, positive linear trend was statistically significant and explained 19 % of the total variance in the data set. By contrast, the accumulation season precipitation did not change at Abastumani in 1987–2005 in comparison with 1960–1986. By 2005, a statistically significant change in precipitation had already occurred on the northern slope at both 15 stations.

6 Discussion and conclusions

In the central and western sectors of the MCR and on Mt. Elbrus, the measured glacier map area reduction in the first decade of the 21st century of $4.7 \pm 1.6\%$ exceeded uncertainties associated with image co-registration, delineation of glacier outlines and 20 presence of debris cover (Table 2). The total mapping error for ASTER imagery was estimated as $\pm 1.8\%$ and $\pm 1.9\%$ for the central and western MCR glaciers respectively and $\pm 0.7\%$ for Mt. Elbrus. This is considerably lower than errors resulting from the use of Landsat imagery (e.g. Stokes et al., 2006; Bhambri et al., 2011) and slightly lower than in other studies utilising ASTER imagery (e.g. Paul et al., 2004; Bhambri et al., 2011; Shahgedanova et al., 2012). The latter difference is due to the limited 25 extent of debris cover, size distribution and morphology of glaciers in the sample. The supra-glacial debris cover significantly reduces the accuracy of glacier mapping (e.g.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Racoviteanu et al., 2008; Bhambri et al., 2011). However, in the Caucasus the extent of supra-glacial debris is relatively small accounting for 3–25 % of individual glacier areas (Stokes et al., 2007) and, importantly, debris-covered glaciers have clearly identifiable snout margins. Larger errors arise when mapping very small glaciers with map areas below 0.1 km² (e.g. Shahgedanova et al., 2012), however, only 20 % of the glaciers in the assessed sample were smaller than 0.1 km² in 2001 and these were mostly cirque glaciers with clearly defined margins.

Although differences between glacier wastage in different sectors of the MCR are close to the measurement uncertainty, it is possible to suggest that glaciers located on the southern slope of the central MCR, especially the valley glaciers lost a higher proportion of their area than glaciers in other regions of the Caucasus, $5.6 \pm 2.1\%$ (Table 2) and 7.4 % (Table 3) respectively. A higher rate of glacier wastage in the south is consistent with negative precipitation anomalies in the 1990s and lower than in the north positive anomalies registered in the 2000s (Fig. 6b) which, in turn, are consistent with the impacts of NAO on precipitation in southern Europe and western-most regions of Asia (Marshall et al., 2001). By contrast, glaciers on the southern slope of the western MCR lost 3.8 % of their area which is the lowest wastage in the region (Table 2) with valley glaciers losing 2.9 % in the north and 3.6 % in the south (Table 3). It is likely that high accumulation season precipitation exceeding that in the central MCR by the factor of two–three (Volodicheva, 2002) and persistent positive precipitation anomalies observed since the mid-1990s as slowed down glacier retreat in the western MCR.

The glaciers on Mt. Elbrus lost the same percentage of their combined area as glaciers in the central MCR despite the higher AAR (Table 2). We calculated the overall area reduction as $4.9 \pm 0.7\%$ with a rate of decrease of $0.4\% \text{ a}^{-1}$ between 1999 and 2012. Zolotarev and Kharkovets (2012) who assessed glacier area change on Mt. Elbrus in the 1997–2007 period using aerial photography from 1997 and Cartosat-1 imagery with spatial resolution of 2.5 m reported an overall 3.8 % area loss. The difference between the two assessments is small and, in addition to measurement uncertainties, reflects slightly different periods of assessments and inclusion of nunataks and

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

bare rocks as glacierised area by Zolotarev and Kharkovets (2012). Holobaca (2013) reported area change of 9.1 % between 1985 and 2007 (0.4 \% a^{-1}) from Landsat TM imagery. The rate of retreat is the same as in our assessment, however, the overall glacier wastage can be overestimated (in the earlier years) because of the inclusion of snow-covered rock glaciers as glacierised area on the 1985 imagery. The Ullukam glacier, which is traditionally considered as part of the Elbrus massif, is excluded from this assessment.

The average rate of terminus recession of valley glaciers doubled in the north and more than tripled in the south in the 21st century in comparison with 1987–2001. Using the approximation by Johannesson et al. (1989) based on a ratio between glacier depth at ELA and mass balance on glacier tongue, dynamic response times of Djankuat and Garabashi glaciers are estimated as 12–15 and 17–18 years respectively. The observed glacier recession and its acceleration in the last decade detected from the changes in the rate of snout retreat are consistent with the positive trend in summer air temperatures since the 1990-s. Strong positive anomalies of $2\text{ }^{\circ}\text{C}$ in 2006 and 2010 (Fig. 6a) contributed to enhanced glacier melt (Fig. 7). The exceptional heat wave which developed over European Russia in July–August 2010 (Grumm, 2011) was as detrimental for the state of the Caucasus glaciers as the 2003 West European heat wave for the glaciers in the Alps (Haeberli et al., 2007). The mass balance records for Garabashi show that in the summer of 2010 alone, the glacier lost on 2.52 m w.e., close to the record loss of 2.58 m w.e. in 1998 and nearly twice the record average. A strong decline in cumulative mass balance (Fig. 7) occurred subsequently despite a 20 % increase in precipitation (Fig. 6b) north of MCR (WGMS, 2013).

Glacier shrinkage in the Caucasus appears to be slower than in the European Alps. Paul et al. (2004) reported 18 % (1.3 \% a^{-1}) glacier shrinkage in the Swiss Alps in the 1985–1999 period. Maragno et al. (2009) reported 5.5 % (1.4 \% a^{-1}) shrinkage in 1999–2003 and even stronger shrinkage of 11 or 2.8 \% a^{-1} was reported by Diodati et al. (2011) for the Italian Alps. The heat wave of 2003 had a strong impact on glacier wastage in the European Alps (Haeberli et al., 2007), however, even prior to

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

this extreme event, glacier wastage rates in the Alps exceeded those of $0.4\text{--}0.6\text{ \% a}^{-1}$ that we report for the Caucasus. Another important difference is contribution of small glaciers to the overall reduction of glacierized area. Thus in the Swiss and Lombardy Alps, glaciers with individual areas less than 1 km^2 contributed about 40 and 58 % of total area loss while accounting for only 15 and 30 % of glacierized area respectively (Paul et al., 2004; Citterio et al., 2007). Glaciers of the same size category occupied 22.3 % of the glacierized area in MCR and contributed 7.3 % of area loss.

To summarise, (i) the Caucasus glaciers lost $4.7 \pm 1.6\text{ \%}$ of their total area between 2000 and 2010/2012 and this estimation exceeds uncertainty of the measurements; (ii) glaciers of Mt. Elbrus lost similar proportion of their area despite higher elevation and large AAR; (iii) the largest wastage occurred on the southern slope of the central sector in line with precipitation anomalies; (iv) the retreat of glacier termini accelerated in the first decade of the 21st century in comparison with the end of the 20th century.

References

Andreassen, L. M., Paul, F., Kääb, A., and Hausberg, J. E.: Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s, *The Cryosphere*, 2, 131–145, doi:10.5194/tc-2-131-2008, 2008.

Arendt, A. et al.: Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines, Boulder, Colorado, Digital Media, <http://www.glims.org/RGI/randolph.html> (last access: 7 July 2014), 2012.

Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing, *J. Glaciol.*, 57, 543–556, 2011.

Bhambri, R., Bolch, T., and Chaujar, R. K.: Frontal recession of Gangotri Glacier, Garhwal Himalayas, from 1965–2006, measured through high resolution remote sensing data, *Curr. Sci.*, 102, 489–494, 2012.

Bolch, T., Buchroithner, M. F., Pieczonka, T., and Kunert, A.: Planimetric and volumetric glacier changes in the Khumbu Himalaya 1962–2005 using Corona and ASTER data, *J. Glaciol.*, 54, 562–600, 2008.

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Bolch, T., Menounos, B., and Wheate, R.: Landsat-based inventory of glaciers in western Canada, 1985–2005, *Remote Sens. Environ.*, 114, 127–137, 2010.

Borovik, E. S. and Kravtsova, V. I.: Catalogue of Glaciers of the USSR, Gidrometeocizdat, Leningrad, Vol. 8, Part 5, Basins of the Malka and the Baksan Rivers, 86 pp., 1970.

5 Bushueva, I. S. and Solomina, O. N.: Kolebaniya lednika Kashkatash v XVII–XXI vv. po kartograficheskim, dendrochronologicheskim i lichenometricheskim dannym (Fluctuations of Kashkatash Glacier in XVII–XXI centuries according to cartographic, dendrochronological and lichenometric data), *Led i Sneg (Ice and Snow)*, 2, 121–130, 2012 (in Russian).

10 Church, J. A., White, N. J., Konikow, L. K., Domingues, C. M., Cogley, J. G., Rignot, E., Gregory, J. M., van den Broeke, M. R., Monaghan, A. J., and Velicogna, I.: Revisiting the Earths sea-level and energy budgets from 1961 to 2008, *Geophys. Res. Lett.*, L18601, doi:10.1029/2011GL048794, 2012.

15 Citterio, M., Diolaiuti, G., Smiraglia, C., D'Agata, C., Carnielli, T., Stella, G., and Siletto, G. B.: The fluctuations of Italian glaciers during the last century: A contribution to knowledge about Alpine glacier changes, *Geogr. Ann. A*, 89, 167–184, 2007.

20 DeBeer, C. M. and Sharp, M. J.: Recent changes in glacier area and volume within the Southern Canadian Cordillera, *Ann. Glaciol.*, 46, 215–221, 2007.

25 Diolaiuti, D., Maragno, D., D'Agata, C., Smiraglia, C., and Bocchiola, D.: Glacier retreat and climate change: Documenting the last 50 years of Alpine glacier history from area and geometry changes of Dosde Piazz glacier (Lombardy Alps, Italy), *Prog. Phys. Geog.*, 35, 161–182, 2011.

Dolgova, E. A., Matskovsky, V. V., Solomina, O. N., Rototaeva, O. V., Nosenko, G. A., and Khmelevsky, I. F.: Reconstructing mass balance of Garabashi Glacier (1800–2005) using dendrochronological data, *Led i Sneg (Ice and Snow)*, 1, 34–43, 2013 (in Russian).

30 Dyurgerov, M. B. and Meier, M. F.: Twentieth century climate change: evidence from small glaciers, *P. Natl. Acad. Sci. USA*, 97, 1406–1411, 2000.

Frey, H., Paul, F., and Strozzi, T.: Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results, *Remote Sens. Environ.*, 124, 832–843, 2012.

Granshaw, F. D. and Fountain, A. G.: Glacier change (1958–1998) in the North Cascades National Park Complex, Washington, USA, *J. Glaciol.*, 52, 251–256, 2006.

Grumm, R. H.: The Central European and Russian heat event of July–August 2010, *B. Am. Meteorol. Soc.*, 92, 1285–1296, 2011.

Title Page	Abstract	Introduction
Conclusions	References	
Tables	Figures	
◀	▶	
◀	▶	
Back	Close	
Full Screen / Esc		
	Printer-friendly Version	
	Interactive Discussion	

Hauberli, W., Hoelzle, M., Paul, F., and Zemp, M.: Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps, *Ann. Glaciol.*, 46, 150–160, 2007.

Hoelzle, M., Hauberli, W., Dischl, M., and Peschke, W.: Secular glacier mass balances derived from cumulative glacier length changes, *Global Planet. Change*, 36, 295–306, 2003.

Holobaca, I.-H.: Glacier Mapper – a new method designed to assess change in mountain glaciers, *Int. J. Remote Sens.*, 34, 8475–8490, 2013.

Jóhannesson, T., Raymond, C., and Waddington, E.: Time-scale for adjustment of glaciers to changes in mass balance, *J. Glaciol.*, 35, 355–369, 1989.

Keinholtz, C., Hock, R., and Arendt, A. A.: A new semi-automatic approach for dividing glacier complexes into individual glaciers, *J. Glaciol.*, 59, 925–937, 2013.

Koblet, T., Gärtnner-Roer, I., Zemp, M., Jansson, P., Thee, P., Hauberli, W., and Holmlund, P.: Re-analysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 1: Determination of length, area, and volume changes, *The Cryosphere*, 4, 333–343, doi:10.5194/tc-4-333-2010, 2010.

Kutuzov S., Lavrentiev, I. I., Macheret, Y. Y., and Petrakov, D. A.: Changes of Marukh Glacier from 1945 to 2011 *Led i Sneg (Ice and Snow)*, 1, 123–128, 2012 (in Russian).

Lang, H. R. and Welch, R.: ATBD-AST-08 Algorithm theoretical basis document for ASTER digital elevation models (Standard product AST14), http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-14.pdf (last access: 7 July 2014), 1999.

Leclercq, P. W. and Oerlemans, J.: Global and hemispheric temperature reconstruction from glacier length fluctuations, *Clim. Dynam.*, 38, 1065–1079, 2012.

Leclercq, P. W., Oerlemans, J., Basagic, H. J., Bushueva, I., Cook, A. J., and Le Bris, R.: A data set of worldwide glacier length fluctuations, *The Cryosphere*, 8, 659–672, doi:10.5194/tc-8-659-2014, 2014.

Maragno, D., Diolaiuti, G., D'Agata, C., Mihalcea, C., Bocchiola, D., Janetti, E. B., Riccardi, A., and Smiraglia, C.: New evidence from Italy (Adamello Group, Lombardy) for analyzing the ongoing decline of Alpine glaciers, *Geogr. Fis. Din. Quat.*, 32, 31–39, 2009.

Marshall, J., Kushnir, Y., Battisti, D., Chang, P., Czaja, A., Dickson, R., Hurrell, J., McCartney, M., Saravanan, R., and Visbeck, M.: North Atlantic climate variability: phenomena, impacts and mechanisms, *Int. J. Climatol.*, 21, 1863–1898, 2001.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Maruashvili, L. I., Kurdgelaidze, G.M., and Lashkhi, T. A.: Catalogue of Glaciers of the USSR, Vol. 9, Parts 2-6, Basin of the Kodori and Inguri Rivers, Gidrometeoizdat, Leningrad, 86 pp., 1975.

Meyer, D., Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., Zhang, Z., Danielson, J., Krieger, T., Curtis, B., Haase, J., Abrams, M., Crippen, R., and Carabajal, C.: ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. NASA Land Processes Distributed Active Archive Center, online report http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf (last access: 7 July 2014), 26 pp., 2011.

Nakano, K., Zhang, Y., Shibuo, Y., Yabuki, H., and Hirabayashi, Y.: A monitoring system for mountain glaciers and ice caps using 30 meter resolution satellite data, *Hydrol. Res. Lett.*, 7, 73–78, 2013.

Panov, V. D.: *Evolyutsiya sovremennoi oledeneniya Kavkaza* (Evolution of the Contemporary Glaciation in the Caucasus), Gidrometeoizdat, St. Petersburg, 432 pp., 1993 (in Russian).

Panov, V. D. and Kravtsova, V. I.: Catalogue of Glaciers of the USSR, Vol. 8, Parts 1–4, Basin of the Kuban River, Gidrometeoizdat, Leningrad, 145 pp., 1967.

Paul, F. and Andreassen, L. M.: A new glacier inventory for the Svalisen region, Norway, from Landsat ETM+ data: challenges and change assessment, *J. Glaciol.*, 55, 607–618, 2009.

Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.: The new remote-sensing-derived Swiss glacier inventory: I. Methods, *Ann. Glaciol.*, 34, 355–361, 2002.

Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W.: Rapid disintegration of Alpine glaciers observed with satellite data, *Geophys. Res. Lett.*, 31, L21402, doi:10.1029/2004GL020816, 2004.

Paul, F., Barry, R., Cogley, G., Frey, H., Haeberli, W., Ohmura, A., Ommannay, S., Raup, B., Rivera, A., and Zemp, M.: Recommendations for the compilation of glacier inventory data from digital sources, *Ann. Glaciol.*, 50, 119–126, 2009.

Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S. P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., and Winsvold, S.: On the accuracy of glacier outlines derived from remote-sensing data, *Ann. Glaciol.*, 54, 171–182, 2013.

Popovnin, V. V.: *Pole akkumulyatsii gornogo lednika* (Accumulation Zone of a Mountain Glacier) Mater. Glyatsiol. Issled., (Data Glaciol. Res.), 88, 27–40, 2000 (in Russian).

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Popovnin, V. V. and Petrakov, D. A.: Lednik Djankuat za poslednie 34 goda, 1967/68-2000/01 (Djankuat Glacier in the last 34 years, 1967/68-2000/01). Mater. Glyatsiol. Issled., (Data Glaciol. Res.), 98, 167–175, 2005.

Racoviteanu, A. E., Williams, M. W., and Barry, R. G.: Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya, *Sensors*, 8, 3355–3383, 2008.

5 Rototaeva, O., Nosenko, G., Tarasova, L., and Khmelevsky, I.: Caucasus, in: Oledenenie Severnoi i Tsentralnoi Evrazii v Sovremennyyu Epohu (Glaciation in Northern and Central Eurasia at Present Time), edited by: Kotlyakov, V. M., Nauka Publishers, Moscow, 141–162, 2006 (in Russian).

10 Shahgedanova, M., Stokes, C. R., Gurney, S. D., and Popovnin, V. V.: Interactions between mass balance, atmospheric circulation and recent climate change on the Djankuat glacier, Caucasus Mountains, Russia, *J. Geophys. Res.-Atmos.*, 110, D04108, doi:10.1029/2004JD005213, 2005.

15 Shahgedanova, M., Popovnin, V., Aleynikov, A., Petrakov, D., and Stokes, C. R.: Long-term change, inter-annual, and intra-seasonal variability in climate and glacier mass balance in the central Greater Caucasus, Russia, *Ann. Glaciol.*, 46, 355–361, 2007.

Shahgedanova, M., Nosenko, G., Bushueva, I., and Ivanov, M.: Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia, 1950–2008, *J. Glaciol.*, 58, 953–964, 2012.

20 Stokes, C. R., Gurney, S. D., Shahgedanova, M., and Popovnin, V. V.: Late-20th-century changes in glacier extent in the Caucasus Mountains, Russia/Georgia, *J. Glaciol.*, 52, 99–109, 2006.

25 Stokes, C. R., Popovnin, V. V., Aleynikov, A., and Shahgedanova, M.: Recent glacier retreat in the Caucasus Mountains, Russia, and associated changes in supraglacial debris cover and supra/proglacial lake development, *Ann. Glaciol.*, 46, 196–203, 2007.

Svoboda, F. and Paul, F.: A new glacier inventory on southern Baffin Island, Canada, from ASTER data: I. Applied methods, challenges and solutions, *Ann. Glaciol.*, 50, 11–21, 2009.

Volodicheva, N.: The Caucasus, in *The Physical Geography of Northern Eurasia*, edited by: Shahgedanova, M., 350–376, Oxford University Press, Oxford, 2002.

30 WGMS: *Glacier Mass Balance Bulletin No. 12 (2010–2011)* and earlier issues, edited by: Zemp, M., Nussbaumer, S. U., Gärtner-Roer, I., Hoelzle, M., Paul, F., and Haeberli, W., ICSU(WDS) / IUGG (IACS) / UNEP / WMO, World Glacier Monitoring Service, Zurich, Switzerland, 106 pp., 2013.

TCD

8, 4159–4194, 2014

Deglaciation of the Caucasus Mountains, Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Yefremov, Y. V., Panov, V. D., Lurie, P. M., Iliychev, Y. S., Panova, S. V., and Lutkov, D. A.: Orografiya, oledenenie, klimat Bolshogo Kavkaza (Orography, Glaciation and Climate of the Greater Caucasus), Kubanskyi State University Press, Krasnodar, 337 pp., 2007 (in Russian).

5 Zemp, M., Hoelzle, M., and Haerberli, W.: Six decades of glacier mass-balanec observations: a review of the worldwide monitoring network, *Ann. Glaciol.*, 50, 101–111, 2009.

Zolotarev, E. A. and Kharkovets, E. G.: Oledenenie Elbrusa kontse XX veka (Glaciation of Mt. Elbrus at the end of the 20th Century), *Led i Sneg* (Ice and Snow), 5, 45–51, 2007 (in Russian).

10 Zolotarev, E. A. and Kharkovets, E. G.: Evolyutsiya oledeneniya Elbrusa posle malogo lednikovogo perioda (Evolution of glaciations on Mt Elbrus after the Little Ice Age), *Led i Sneg* (Ice and Snow), 2, 5–14, 2012 (in Russian).

TCD

8, 4159–4194, 2014

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

|◀

▶|

◀

▶

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Date	Type of imagery	Region	No. of glaciers
06/09/2012	ASTER	Mt. Elbrus 42.96–43.60° N; 42.16–43.05° E	20
18/08/1999	Landsat ETM+ panchromatic; path 171; row 030	Mt. Elbrus 41.14–44.19° N; 41.94–44.96° E	
15/09/2001	ASTER	Central MCR and Mt. Elbrus for the assessment of re- cession of glacier termini; 43.05–43.35° N; 42.34–42.83° E	174 in all: 105 and 69 on northern and southern slopes in Baksan and In- guri catchments respec- tively
29/09/2010 23/08/2010	ASTER ASTER	Western MCR; 43.07–43.43° N; 41.62–42.40° E	304 in all: 147 and 157 on northern (Kuban catch- ment) and southern (In- guri and Kodori catch- ments) slopes
12/09/2000	Landsat ETM+ panchromatic; path 171; row 030		
25–26/09/1987	Aerial photographs	43.05–43.35° N; 42.34–42.83° E	28 glaciers: 7 in the Bak- san and Adylsu valleys and 14 in the Inguri val- ley in central MCR; 7 on south-eastern slope of Mt. Elbrus
25–26/09/1987	Aerial photographs	43.07–43.43° N 41.80–42.40° E	17 glaciers in the Kuban, Kodori and Inguri basins in the western MCR

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Table 2. Changes in glacierized area.

Region		Combined area (km ²)		Area reduction	
		1999/2000/2001	2010/2012	km ²	%
Central MCR	Total	170.63	162.07	8.56	5.0 ± 1.8
	Northern	73.41	70.28	3.13	4.3 ± 1.6
	Southern	97.22	91.79	5.43	5.6 ± 2.1
Western MCR	Total	118.3	113.4	4.87	4.1 ± 1.9
	Northern	63.15	60.38	2.77	4.4 ± 1.9
	Southern	55.15	53.05	2.1	3.8 ± 1.9
Elbrus		118.4	112.6	5.8	4.9 ± 0.7
Total		407.35	388.11	19.24	4.7 ± 1.6

[Title Page](#)[Abstract](#) [Introduction](#)[Conclusions](#) [References](#)[Tables](#) [Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Table 3. Area loss (%) according to glacier type in the Central and Western MCR. Number of glaciers of each type is given in parentheses. The two compound-valley glaciers located on the southern slope of the central MCR are not included (see text).

Region Type	Central			Western			All
	North	South	All	North	South	All	
Valley	5.3 (7)	7.4 (25)	6.7	2.9 (19)	3.6 (42)	3.3	5.0
Cirque	4.1 (156)	3.3 (20)	4.0	6.2 (104)	4.4 (85)	5.5	4.6
Hanging	4.5 (4)	0 (3)	4.4	6.6 (23)	0.8 (6)	5.2	5.1
Ice aprons	5.9 (7)	6.8 (15)	6.1	3.5 (11)	4.0 (24)	3.7	5.0

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

◀

▶

◀

▶

Back

Close

Full Screen / Esc

Printer-friendly Version

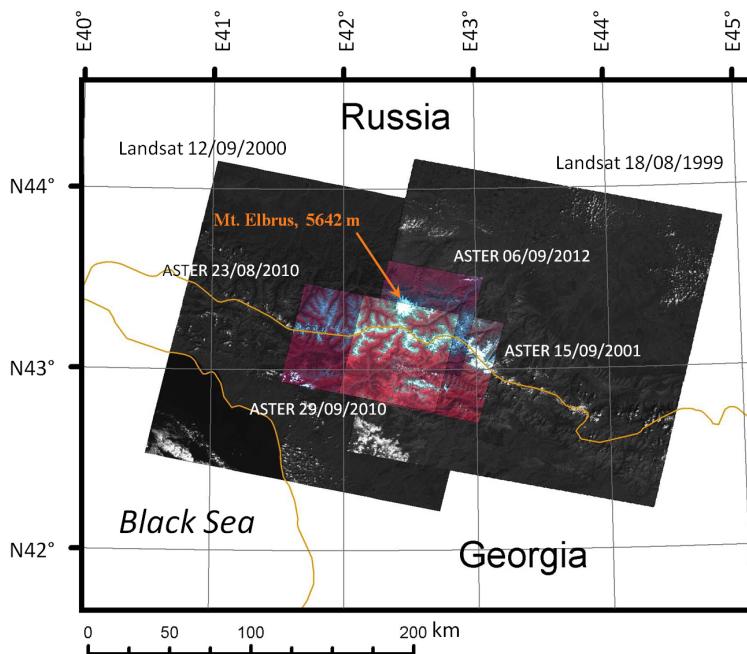
Interactive Discussion

Table 4. Changes in map areas of glaciers located on Mt. Elbrus between 1999 and 2012. All glaciers are shown in Fig. 4.

Number (Fig. 4)	Name	Glacier	WGI ID	Area		Area change km ²	%
				1999	2012		
1	Ulluchiran		SU4G08005001	11.63	11.13	0.5	4.3
2	Karachaul		SU4G08005002	7.44	7.22	0.22	3.0
3	Ullukol and Ullumalienderku		SU4G08005003	4.85	4.54	0.31	6.4
4	Mikelchiran		SU4G08005005	5.05	4.86	0.19	3.8
5	Dzhikiugankez		SU4G08005006	26.12	24.22	1.90	7.3
6	Irikchat		SU4G08005018	1.41	1.31	0.10	7.1
7	Irik		SU4G08005020	9.18	8.90	0.28	3.1
8	No 25		SU4G08005025	0.60	0.56	0.04	6.7
9	Terskol		SU4G08005026	7.99	7.71	0.28	3.5
10	Garabashi		SU4G08005027	3.26	3.02	0.24	7.4
11	Malyi Azau		SU4G08005028	8.84	8.27	0.57	6.4
12	Bolshoy Azau		SU4G08005029	19.70	18.53	1.17	5.9
13	311		SU4H08004311	0.46	0.39	0.07	15.2
14	312		SU4H08004312	0.26	0.22	0.04	15.4
15	313 ^a		SU4H08004313	1.07	1.05	0.02	1.9
16	Ullukam ^a		SU4H08004313	0.65	0.64	0.01	1.5
17	317		SU4H08004317	0.55	0.55	0	0
18	Kyukyurtlyu		SU4H08004318	6.92	6.83	0.09	1.3
19	319		SU4H08004319	0.46	0.46	0	0
20	Bityuktyube		SU4H08004320	1.98	1.90	0.08	4.0
8 separated ice bodies (Fig. 4)				–	0.3	–	–
Total				118.4	112.6	5.8 ^b	4.9 ± 0.7

^a Glacier No. 313 is a now disconnected part of Ullukam hence the same WGI identification number. ^b Including 8 separated ice bodies in 2012.

Table 5. Characteristics of glaciers used for measuring snout retreat. The error terms are ± 9.9 m and ± 11 m for the 1987–2000/2001 and 2000/2001–2010 periods respectively.


Region	Slope	No.	Length (km) as in 1987		Length change			
			Average	Range	1987–2000/2001	2000/2001–2010	m	ma ⁻¹
Central MCR	All	21	4.2	0.8–9.7	52.9	3.8	106.7	11.9
	N	7	4.6	2.8–9.7	77.1	5.5	121.4	13.5
	S	14	4.0	0.8–8.3	40.8	2.9	99.4	11.0
Western MCR	All	17	2.3	0.8–3.6	40.5	3.2	78.5	8.7
	N	13	2.2	0.8–3.6	47.5	3.7	88.6	8.9
	S	4	2.7	1.8–3.3	13.3	1.0	32.7	3.2
Elbrus	SE	6	7.0	2.6–10.2	115.8	8.3	126.7	14.1

Title Page	Abstract	Introduction
Conclusions	References	
Tables	Figures	
◀	▶	
◀	▶	
Back	Close	
Full Screen / Esc		
Printer-friendly Version		
Interactive Discussion		

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

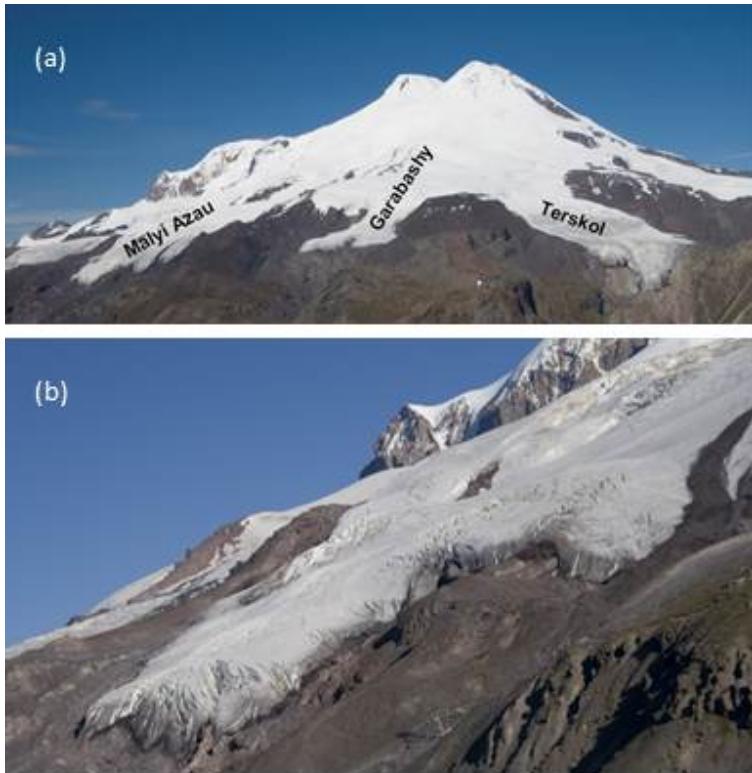


Figure 1. Study area and satellite imagery used for the analysis. The yellow lines show the Black Sea coastline and the MCR.

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Figure 2. Oblique aerial photograph of (a) glaciers on Mt. Elbrus and (b) snout of the Malyi Azau glacier. Note the clearly defined glacier boundaries and a very limited extent of debris cover. Photograph by I. I. Lavrentiev.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

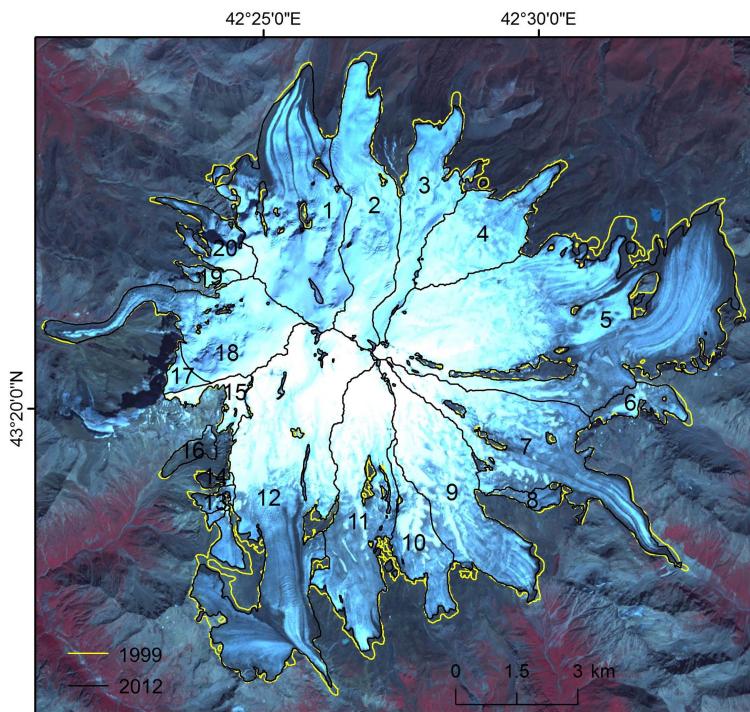
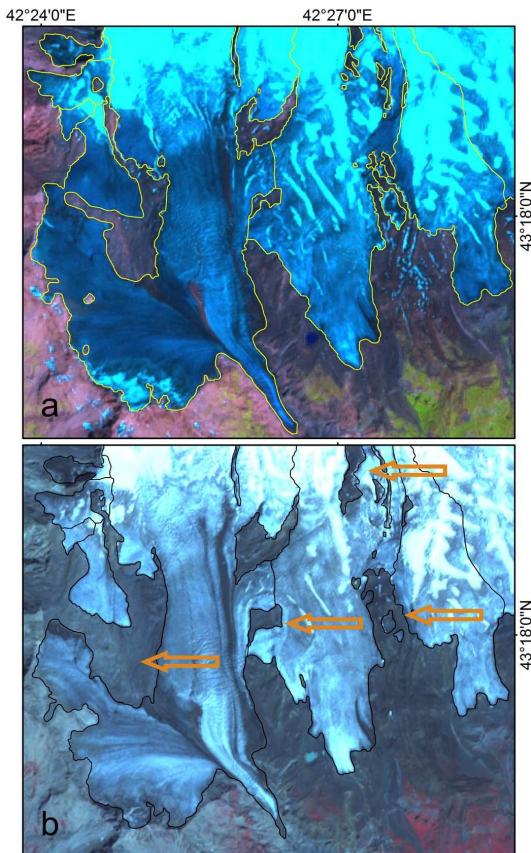
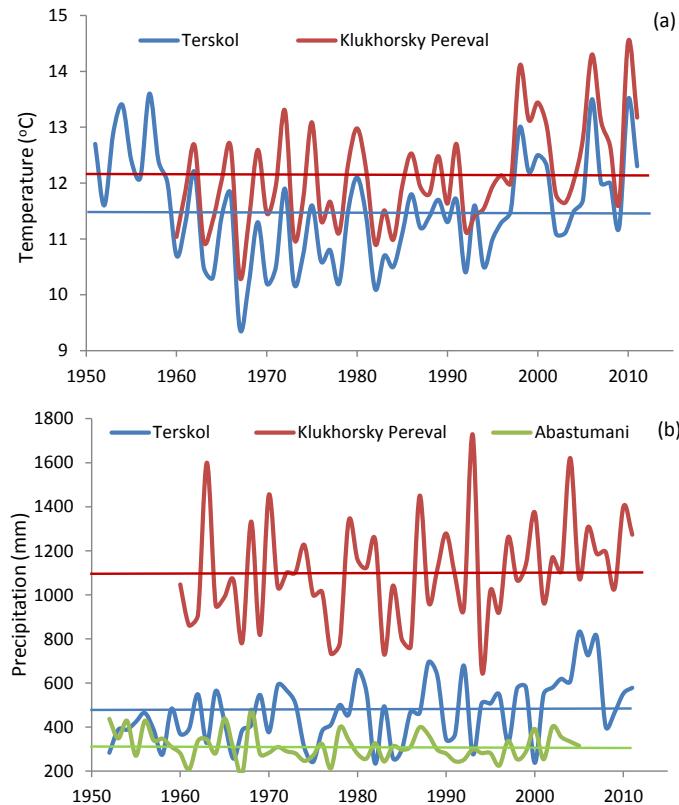


Figure 3. Oblique aerial photograph of the Donguz-Orun glacier which has the highest extent of debris cover in the sample. Photograph by I. I. Lavrentiev.

[Title Page](#)[Abstract](#)[Introduction](#)[Conclusions](#)[References](#)[Tables](#)[Figures](#)[◀](#)[▶](#)[◀](#)[▶](#)[Back](#)[Close](#)[Full Screen / Esc](#)[Printer-friendly Version](#)[Interactive Discussion](#)

Deglaciation of the
Caucasus Mountains,
Russia/Georgia


M. Shahgedanova et al.


Figure 4. Changes in glacierised area of Mt. Elbrus between 1999 and 2012. See Table 4 for the statistics of changes in areas of individual glaciers.

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

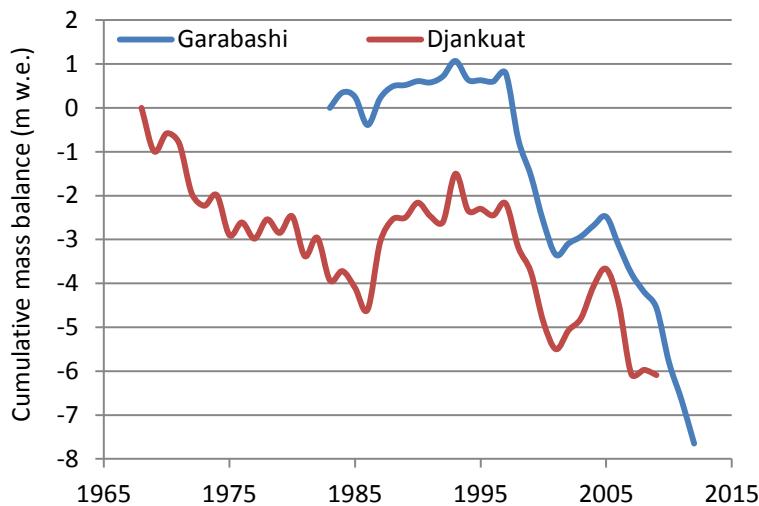

Figure 5. Expansion of exposed rocks on the southern slope of Mt. Elbrus: (a) 1999 and (b) 2012. Arrows point at the expanded areas of exposed rocks.

Figure 6. (a) JJA temperature and (b) October–April precipitation for Abastumani, Klukhorsky Pereval and Terskol stations. Horizontal lines show record averages for each station.

Deglaciation of the
Caucasus Mountains,
Russia/Georgia

M. Shahgedanova et al.

Figure 7. Cumulative mass balance of Garabashi and Djankuat glaciers (WGMS, 2013; unpublished records from the Institute of Geography, Russian Academy of Science for Garabashi in 2012).